L.D. Porta gives the following equation determining the efficiency of a steam locomotive, applicable to steam engines of all kinds: power (kW) = steam Production (kg h-1)/Specific steam consumption (kg/kW h).
A greater quantity of steam can be generated from a given quantity of water by superheating it. As the fire is burning at a much higher temperature than the saturated steam it produces, far more heat can be transferred to the once-formed steam by superheating it and turning the water droplets suspended therein into more steam and greatly reducing water consumption.
The superheater works like coils on an air conditioning unit, however to a different end. The steam piping (with steam flowing through it) is directed through the flue gas path in the boiler furnace. This area typically is between 1,300–1,600 degree Celcius (2,372–2,912 F). Some superheaters are radiant type (absorb heat by thermal radiation), others are convection type (absorb heat via a fluid i.e. gas) and some are a combination of the two. So whether by convection or radiation the extreme heat in the boiler furnace/flue gas path will also heat the superheater steam piping and the steam within as well. It is important to note that while the temperature of the steam in the superheater is raised, the pressure of the steam is not: the turbin or moving pistons offer a "continuously expanding space" and the pressure remains the same as that of the boiler. The process of superheating steam is most importantly designed to remove all droplets entrained in the steam to prevent damage to the turbine blading and/or associated piping. Superheating the steam expands the volume of steam, which allows a given quantity (by weight) of steam to generate more power.
A steam turbine with the case opened
When the totality of the droplets are eliminated, the steam is said to be in a superheated state.In a Stephensonian firetube locomotive boiler, this entails routing the saturated steam through small diameter pipes suspended inside large diameter fire tubes putting them in contact with the hot gases exiting the firebox; the saturated steam flows backwards from the wet header towards the firebox, then forwards again to the dry header. Superheating only began to be generally adopted for locomotives around the year 1900 due to problems of overheating of and lubrication of the moving parts in the cylinders andsteam chests. Many firetube boilers heat water until it boils, and then the steam is used at saturation temperature in other words the temperature of the boiling point of water at a given pressure (saturated steam); this still contains a large proportion of water in suspension. Saturated steam can and has been directly used by an engine, but as the suspended water cannot expand and do work and work implies temperature drop, much of the working fluid is wasted along with the fuel expended to produced it.
0 comments:
Post a Comment